Kim Min-keyong – Environmental Biophotonics Research – Best Researcher Award

Kim Min-keyong - Environmental Biophotonics Research - Best Researcher Award

Korea Railroad Research Institute - South Korea

AUTHOR PROFILE

ORCID

SCOPUS

šŸŒ EARLY ACADEMIC PURSUITS

Kim Min-keyongā€™s academic journey began with a strong foundation in environmental engineering, leading to a Ph.D. in Environmental Planning from Sungkyunkwan University. His research focused on sustainable urban development and environmental impact assessments, setting the stage for his contributions to environmental science and railway infrastructure planning.

šŸš† PROFESSIONAL ENDEAVORS

Currently a Senior Researcher at the Korea Railroad Research Institute, Kim has been actively involved in environmental management and railway sustainability projects. His expertise extends to air quality monitoring, GIS-based environmental planning, and integrating AI with transportation infrastructure for eco-friendly solutions.

šŸ”¬ CONTRIBUTIONS AND RESEARCH FOCUS

Kim's research revolves around air quality assessment, railway development, and digital transformation in environmental planning. He has developed innovative air purification technologies and environmental assessment models for railway systems. His studies on volatile organic compounds and particulate matter have contributed to sustainable transportation policies.

šŸ† ACCOLADES AND RECOGNITION

As a recognized expert in environmental science, Kim has authored numerous SCI and Scopus-indexed publications on air pollution and railway emissions. His research has led to multiple patents in air purification and environmental monitoring technologies, reflecting his commitment to advancing clean energy solutions in transportation.

šŸŒ± IMPACT AND INFLUENCE

His work has influenced national and international policies on railway environmental management. Through advisory roles in major transportation corporations, Kim has contributed to environmental regulations and sustainable railway infrastructure development, ensuring a greener future for urban transit systems.

šŸš€ LEGACY AND FUTURE CONTRIBUTIONS

Kim Min-keyongā€™s legacy is defined by his groundbreaking research in railway environmental impact assessment and air purification technologies. His future work aims to integrate AI and digital twin modeling into sustainable transportation planning, shaping the next generation of eco-friendly railway systems.

NOTABLE PUBLICATION

Title: Digitalization for the environmental impact assessment of railway projects using drones and lidar
Authors: Kim, M.-K.; Park, D.; Hwang, D.; Kim, D.H.; Seo, G.S.
Journal: Research Square

Title: GIS-Based Analysis of Volatile Organic Compounds in Bucheon, Korea, Using Mobile Laboratory and Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry Methods
Authors: Min Kyeong Kim; Daeho Kim; Jung-Young Seo; Duckshin Park
Journal: Toxics

Title: Characterization of bacterial species and antibiotic resistance observed in Seoul, South Korea's popular Gangnam-gu area
Authors: Sharma, S.; Bakht, A.; Jahanzaib, M.; Kim, M.; Lee, H.; Park, C.; Park, D.
Journal: Heliyon

Title: Determination of the Spatial Distribution of Air Pollutants in Bucheon, Republic of Korea, in Winter Using a GIS-Based Mobile Laboratory
Authors: Kim, M.; Kim, D.; Jang, Y.; Lee, J.; Ko, S.; Kim, K.; Park, C.; Park, D.
Journal: Toxics

Title: Establishment of a Landscape Information Model (LIM) and AI Convergence Plan through the 3D Digital Transformation of Railway Surroundings
Authors: Kim, M.-K.; Park, D.; Yun, S.; Park, W.-H.; Lee, D.; Chung, J.-D.; Chung, K.-J.
Journal: Drones

GuiSheng Li – Environmental Biophotonics Research – Best Researcher Award

GuiSheng Li - Environmental Biophotonics Research - Best Researcher Award

University of Shanghai for Science and Technology - China

AUTHOR PROFILE

SCOPUS

ORCID

šŸŒ± EARLY ACADEMIC PURSUITS

GuiSheng Liā€™s passion for environmental catalysis began with his academic journey, where he explored the fundamentals of photocatalysis and sustainable chemistry. His early studies focused on developing innovative strategies for pollution control and resource efficiency. With a strong foundation in inorganic and physical chemistry, he quickly gained recognition for his research on green technologies.

šŸ”¬ PROFESSIONAL ENDEAVORS

As a leading researcher in environmental catalysis, Li has been dedicated to advancing light/photoelectric-driven catalytic processes. His work centers on controlling environmental pollutants in water and air while promoting resource recovery. He holds key positions in renowned scientific committees, reflecting his deep engagement with Chinaā€™s scientific advancements in materials chemistry.

šŸ’” CONTRIBUTIONS AND RESEARCH FOCUS

Liā€™s research has significantly advanced the field of photocatalysis by integrating non-ionic surfactant templated synthesis into porous metal oxide semiconductors. His studies on COā‚‚ conversion under natural sunlight and the development of MXene-based composite films for EMI shielding have set new benchmarks in sustainable technology. His interdisciplinary approach bridges chemistry, materials science, and environmental engineering.

šŸ† ACCOLADES AND RECOGNITION

Recognized for his pioneering contributions, Li serves as an executive editor and board member of leading scientific journals, including PhotoMat, Chinese Chemical Letters, and Scientific Reports. His editorial influence helps shape global discourse in environmental catalysis and materials science. Additionally, his leadership in Shanghaiā€™s scientific associations highlights his prominence in the academic and industrial sectors.

šŸŒ IMPACT AND INFLUENCE

Through collaborations with international experts, including D.L. Phillips from The University of Hong Kong and H.X. Li from Shanghai Electric Power University, Li fosters global advancements in photocatalysis. His work not only enhances pollution control strategies but also paves the way for cleaner, more efficient energy solutions. His research outputs continue to inspire new generations of scientists in China and beyond.

šŸ”— LEGACY AND FUTURE CONTRIBUTIONS

Liā€™s enduring legacy lies in his commitment to developing green and sustainable technologies for environmental remediation. As vice president of the Shanghai New Materials Association and an influential member of multiple committees, he continues to drive forward cutting-edge solutions for environmental challenges. His future contributions will undoubtedly shape the evolution of photocatalysis and its real-world applications.

NOTABLE PUBLICATION

Title: Recent advances in non-ionic surfactant templated synthesis of porous metal oxide semiconductors for gas sensing applications
Authors: J. Hu, Y. Zou, Y. Deng, Y. Deng, G. Li
Journal: Progress in Materials Science

Title: Boosted photocatalytic COā‚‚ conversion of a Csā‚‚AgBiBrā‚†@Coā‚ƒOā‚„ composite with high activity and selectivity under low-concentration COā‚‚ and natural sunlight
Authors: Y. Song, X. Li, H. Li, G. Li, X. Song
Journal: Applied Catalysis B: Environmental

Title: Efficient carbon recycling for syngas generation through a dual-photoelectrode artificial photosynthesis system
Authors: D. Pan, Y. Wang, Y. Tao, G. Li, H. Li
Journal: Chemical Engineering Journal

Title: Ultrathin Tiā‚ƒCā‚‚Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation
Authors: D. Liu, L. Li, Q. Gong, G. Li, S. Li
Journal: Applied Surface Science

Title: A Wide-Temperature Adaptive Electrochromic Device Based on a Poly(vinyl alcohol)/Poly(acrylic acid) Gel Electrolyte
Authors: Q. Li, J. Li, W. Wang, G. Li, J. Wang
Journal: Advanced Functional Materials

Title: Recycled industrial waste silicon steel as high-performance electrode for oxygen evolution reaction using electroless plating surface modification
Authors: J. Xie, Z. Wang, X. Bai, J. Fan, G. Li
Journal: Applied Surface Science