GuiSheng Li – Environmental Biophotonics Research – Best Researcher Award

GuiSheng Li - Environmental Biophotonics Research - Best Researcher Award

University of Shanghai for Science and Technology - China

AUTHOR PROFILE

SCOPUS

ORCID

🌱 EARLY ACADEMIC PURSUITS

GuiSheng Li’s passion for environmental catalysis began with his academic journey, where he explored the fundamentals of photocatalysis and sustainable chemistry. His early studies focused on developing innovative strategies for pollution control and resource efficiency. With a strong foundation in inorganic and physical chemistry, he quickly gained recognition for his research on green technologies.

🔬 PROFESSIONAL ENDEAVORS

As a leading researcher in environmental catalysis, Li has been dedicated to advancing light/photoelectric-driven catalytic processes. His work centers on controlling environmental pollutants in water and air while promoting resource recovery. He holds key positions in renowned scientific committees, reflecting his deep engagement with China’s scientific advancements in materials chemistry.

💡 CONTRIBUTIONS AND RESEARCH FOCUS

Li’s research has significantly advanced the field of photocatalysis by integrating non-ionic surfactant templated synthesis into porous metal oxide semiconductors. His studies on CO₂ conversion under natural sunlight and the development of MXene-based composite films for EMI shielding have set new benchmarks in sustainable technology. His interdisciplinary approach bridges chemistry, materials science, and environmental engineering.

🏆 ACCOLADES AND RECOGNITION

Recognized for his pioneering contributions, Li serves as an executive editor and board member of leading scientific journals, including PhotoMat, Chinese Chemical Letters, and Scientific Reports. His editorial influence helps shape global discourse in environmental catalysis and materials science. Additionally, his leadership in Shanghai’s scientific associations highlights his prominence in the academic and industrial sectors.

🌍 IMPACT AND INFLUENCE

Through collaborations with international experts, including D.L. Phillips from The University of Hong Kong and H.X. Li from Shanghai Electric Power University, Li fosters global advancements in photocatalysis. His work not only enhances pollution control strategies but also paves the way for cleaner, more efficient energy solutions. His research outputs continue to inspire new generations of scientists in China and beyond.

🔗 LEGACY AND FUTURE CONTRIBUTIONS

Li’s enduring legacy lies in his commitment to developing green and sustainable technologies for environmental remediation. As vice president of the Shanghai New Materials Association and an influential member of multiple committees, he continues to drive forward cutting-edge solutions for environmental challenges. His future contributions will undoubtedly shape the evolution of photocatalysis and its real-world applications.

NOTABLE PUBLICATION

Title: Recent advances in non-ionic surfactant templated synthesis of porous metal oxide semiconductors for gas sensing applications
Authors: J. Hu, Y. Zou, Y. Deng, Y. Deng, G. Li
Journal: Progress in Materials Science

Title: Boosted photocatalytic CO₂ conversion of a Cs₂AgBiBr₆@Co₃O₄ composite with high activity and selectivity under low-concentration CO₂ and natural sunlight
Authors: Y. Song, X. Li, H. Li, G. Li, X. Song
Journal: Applied Catalysis B: Environmental

Title: Efficient carbon recycling for syngas generation through a dual-photoelectrode artificial photosynthesis system
Authors: D. Pan, Y. Wang, Y. Tao, G. Li, H. Li
Journal: Chemical Engineering Journal

Title: Ultrathin Ti₃C₂Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation
Authors: D. Liu, L. Li, Q. Gong, G. Li, S. Li
Journal: Applied Surface Science

Title: A Wide-Temperature Adaptive Electrochromic Device Based on a Poly(vinyl alcohol)/Poly(acrylic acid) Gel Electrolyte
Authors: Q. Li, J. Li, W. Wang, G. Li, J. Wang
Journal: Advanced Functional Materials

Title: Recycled industrial waste silicon steel as high-performance electrode for oxygen evolution reaction using electroless plating surface modification
Authors: J. Xie, Z. Wang, X. Bai, J. Fan, G. Li
Journal: Applied Surface Science

Xiang Xu – Cancer Biophotonics – Best Innovation Award

Xiang Xu - Cancer Biophotonics - Best Innovation Award

Amy Medical University of China - China

AUTHOR PROFILE

SCOPUS
ORCID

EARLY ACADEMIC PURSUITS 🎓

Professor Xiang Xu's journey in medical sciences began in China, where he displayed an early passion for cellular therapies and regenerative medicine. He earned his doctoral degree from the prestigious Third Military Medical University in 2006. His academic excellence and dedication to advancing medical research led him to pursue postdoctoral studies at Pittsburgh University from 2007 to 2009, where he explored the role of HDAC2 in promoting eIF4E sumoylation and activating mRNA translation gene specifically. These formative years laid the groundwork for his future breakthroughs in cytotherapeutics.

PROFESSIONAL ENDEAVORS 🌍

After completing his postdoctoral research, Professor Xu returned to China and became a principal investigator in the field of stem cell and regenerative medicine. In 2010, he joined the first department at the State Key Laboratory of Trauma, Burn, and Combined Injury, where he carried out groundbreaking research on cytotherapeutics. His leadership and expertise in the field positioned him as a pioneering figure in regenerative medicine.

CONTRIBUTIONS AND RESEARCH FOCUS 💡

Professor Xu has been at the forefront of developing innovative therapies in regenerative medicine. His research primarily focuses on immunocyte-based and stem cell-based therapies. In 2018, he founded the Department of Stem Cell & Regenerative Medicine at Daping Hospital of Amy Medical University, where he led multiple clinical and translational research projects. One of his most notable contributions is the development of a novel treatment strategy: the combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-gamma treatment to improve clinical outcomes for patients with rheumatoid arthritis.

ACCOLADES AND RECOGNITION 🏆

Professor Xu’s pioneering research and contributions to cytotherapeutics have earned him widespread recognition. His work has been acknowledged in the scientific community through numerous awards and honors. As a distinguished professor at Amy Medical University, his influence extends beyond research, inspiring the next generation of scientists in stem cell therapy and regenerative medicine.

IMPACT AND INFLUENCE 👨‍🎓

Professor Xu's research has significantly influenced the field of regenerative medicine, particularly in the treatment of autoimmune diseases. His innovative therapeutic strategies have provided new hope for patients suffering from conditions such as rheumatoid arthritis. Through his leadership in academic and medical institutions, he has mentored numerous researchers and clinicians, further advancing the field of cytotherapeutics.

LEGACY AND FUTURE CONTRIBUTIONS ⚛️

\With a strong foundation in regenerative medicine, Professor Xu continues to push the boundaries of stem cell research. His legacy is defined by his commitment to translational research and clinical applications of cytotherapeutics. His future endeavors aim to refine stem cell-based treatments, explore new regenerative strategies, and expand the possibilities of cellular therapy for various medical conditions.

VISION FOR SCIENTIFIC ADVANCEMENT 🛠️

Professor Xu envisions a future where regenerative medicine and cytotherapeutics revolutionize healthcare. His continued efforts in stem cell research and immunotherapy aim to improve treatment outcomes for patients worldwide. Through his dedication to scientific progress, he is shaping a future where cell-based therapies become a cornerstone of modern medicine.

NOTABLE PUBLICATION

  • Title: Lactate-mediated lactylation in human health and diseases: Progress and remaining challenges
    Authors: Xue-ting Hu, Xiao-feng Wu, Jin-yi Xu, Xiang Xu
    Journal: Journal of Advanced Research

  • Title: The dual role of mesenchymal stem cells in apoptosis regulation
    Authors: Zhuo Chen, Xuewei Xia, Mengwei Yao, Yi Yang, Xiang Ao, Zhaoqi Zhang, Li Guo, Xiang Xu
    Journal: Cell Death & Disease

  • Title: XELOX (capecitabine plus oxaliplatin) plus bevacizumab (anti-VEGF-A antibody) with or without adoptive cell immunotherapy in the treatment of patients with previously untreated metastatic colorectal cancer: a multicenter, open-label, randomized, controlled, phase 3 trial
    Authors: Qiu-Zhong Pan, Jing-Jing Zhao, Liang Liu, Dong-Sheng Zhang, Li-Ping Wang, Wen-Wei Hu, De-Sheng Weng, Xiang Xu, Yi-Zhuo Li, Yan Tang et al.
    Journal: Signal Transduction and Targeted Therapy

  • Title: Effect of GRK4 on renal gastrin receptor regulation in hypertension
    Authors: Xia, X.; Zeng, Y.; Li, Z.; Luo, H.; Wang, W.; He, Y.; Lu, B.; Guo, J.; Chen, K.; Xu, X.
    Journal: Clinical and Experimental Hypertension

  • Title: Fibulin2: a negative regulator of BMSC osteogenic differentiation in infected bone fracture healing
    Authors: Li, S.-D.; Xing, W.; Wang, S.-C.; Li, Y.-B.; Jiang, H.; Zheng, H.-X.; Li, X.-M.; Yang, J.; Guo, D.-B.; Xie, X.-Y. et al.
    Journal: Experimental and Molecular Medicine

  • Title: HGF Mediates Human Gingival Derived Mesenchymal Stem Cells Alleviated Airway Inflammation in Animal Models of Allergic Asthma
    Authors: Fang, Q.; Wu, W.; Xiao, Z.; Zeng, D.; Liang, R.; Wang, J.; Yuan, J.; Su, W.; Xu, X.; Zheng, Y. et al.
    Journal: SSRN