Hui jieGe | Fluorescence Imaging Methods | Best Researcher Award
Ph.D. candidate at Beijing Key Laboratory for Green Catalysis and Separation, Institute of Matter Science, Beijing University of Technology, China
Ms. Huijie Ge is a Ph.D. candidate in Materials and Chemical Engineering at the Beijing University of Technology, currently working at the Beijing Key Laboratory for Green Catalysis and Separation. Her research primarily focuses on the synthesis and characterization of core-shell intelligent responsive mesoporous silica nanofunctional materials. These materials are intended for use in drug delivery systems with a special emphasis on their biosafety and environmentally sensitive properties. She investigates their dual pH- and temperature-responsive performance, cytotoxicity, cell uptake, and hemolysis to ensure safe applications in drug delivery. Huijie Ge’s research combines materials science, chemical engineering, and biomedical applications, aiming to address critical challenges in targeted drug delivery. Her work is published in esteemed journals like Pharmaceutics, contributing significantly to the development of innovative materials for medical applications.
Profile
Education
Ms. Huijie Ge is currently pursuing her Ph.D. in Materials and Chemical Engineering at the Beijing University of Technology, with her research focused on advanced drug delivery systems. She completed her undergraduate studies in Chemical Engineering, where she developed a keen interest in nanomaterials and their applications in drug delivery. Her academic journey has been marked by a commitment to understanding and enhancing the interactions between materials and biological systems, with a particular focus on environmental sensitivity and biosafety. Throughout her education, Ms. Ge has been involved in various research projects that have contributed to her deep understanding of materials characterization techniques, experimental testing, and data analysis. Her dedication to scientific research has led to her involvement in significant studies that bridge the gap between material science and pharmaceutical applications, with a goal of developing safer and more effective drug delivery systems.
Experience
Ms. Huijie Ge is currently affiliated with the Beijing Key Laboratory for Green Catalysis and Separation at the Institute of Matter Science, Beijing University of Technology. As a Ph.D. candidate, she plays a pivotal role in the preparation and structural characterization of core-shell mesoporous silica nanofunctional materials. Her expertise includes investigating the materials’ responsiveness to environmental factors such as pH and temperature, and evaluating their applicability in drug delivery systems. Huijie’s experience extends to conducting in-depth studies on the cytotoxicity, cell uptake, and hemolysis of these materials, ensuring their biological safety in medical applications. She is involved in the full research process, from material synthesis and characterization to experimental testing, data analysis, and manuscript writing. Her contributions to the field of material science and chemical engineering have resulted in published research in well-respected journals such as Pharmaceutics and Journal of Fuel Chemistry and Technology.
Research Focus
Ms. Huijie Ge’s research focuses on the development of intelligent, responsive mesoporous silica nanofunctional materials for advanced drug delivery systems. She investigates the synthesis, characterization, and testing of core-shell nanomaterials that respond to environmental stimuli, specifically pH and temperature. These materials are designed for use as drug carriers, offering controlled release and enhanced targeting capabilities. A significant part of her research is dedicated to ensuring the biosafety of these materials, including the evaluation of cytotoxicity, cell uptake, and hemolysis. The goal is to develop materials that are not only effective in drug delivery but also safe for medical use. Through experimental testing and data analysis, she explores the potential of these materials to improve the therapeutic effectiveness of drugs while minimizing side effects. Her work has important implications for cancer treatment, where targeted drug delivery can enhance therapeutic efficacy while reducing systemic toxicity.
Publications
- Dual pH- and Temperature-Responsive Performance and Cytotoxicity of N-Isopropylacrylamide and Acrylic Acid Functionalized Bimodal Mesoporous Silicas with Core–Shell Structure and Fluorescent Feature for HeLa Cells 🌐 Pharmaceutics 2025, 17, 206
- Hydrocracking of Tetrahydronaphthalene for Preparation of Benzene and Alkylbenzene Catalyzed by Mo/Beta Sulfide Catalyst 🔬 Industrial and Engineering Chemistry Research, 2024
- Constructing PdZn Alloy in Pd/ZnO Catalyst for Selective Hydrogenation of Anthracene to Symmetrical Octahydroanthracene 🔥 Journal of Materials Science, 2024
- Preparation of Ni/ZnCo2O4@ZnO Composite Metal Oxide Adsorbent and Its Adsorption Desulfurization and Regeneration Performance 🧪 Journal of Fuel Chemistry and Technology, 2024
- Study of Pre-Coking Modified ZSM-5 Molecular Sieve and Its Benzene and Syngas Alkylation Properties 🧬 Journal of Fuel Chemistry and Technology, 2024
- Constructing Ni/ZnMOx Composite Metal Oxide Adsorbents with Excellent Desulfurization Capacity and Thermal Stability for Reactive Adsorption Desulfurization ⚙️ Fuel, 2024
- Effect of Al Source on the Physicochemical Properties of Cu-Al Spinel Catalysts and the Catalytic Performance for Reverse Water Gas Shift ⚗️ Journal of Fuel Chemistry and Technology, 2024