Taous Khan | Biocomposute Development for Therapeutics | Best Researcher Award

Prof. Dr. Taous Khan | Biocomposute Development for Therapeutics | Best Researcher Award

Prof. Dr. Taous Khan, COMSATS University Islamabad, Abbottabad Campus,Pakistan

Dr. Taous Khan is a distinguished pharmaceutical scientist, academician, and biomedical innovator from Pakistan with over two decades of professional and academic experience. He currently serves as a Professor (OG-IV) in the Department of Pharmacy at COMSATS University Islamabad, Abbottabad Campus. Renowned for his cross-disciplinary research in pharmacognosy, microbial biotechnology, and drug delivery systems, Dr. Khan holds two doctoral degrees and a reputation for excellence in pharmaceutical sciences both nationally and internationally.

Profile

Google Scholar

Scopus

📚 Early Academic Pursuits

Dr. Khan’s academic journey began with stellar performance in pre-medical and science disciplines. He obtained his Bachelor of Pharmacy (B. Pharm.) in 1994 and MPhil in Organic Chemistry (2000) from the University of Peshawar. Driven by an insatiable curiosity for natural products, he pursued two PhDs — the first in Pharmacognosy from the University of Karachi (2006) and the second in (Bio)Chemical Engineering from Kyungpook National University, South Korea (2008). He further advanced his academic credentials through a Postdoctoral Fellowship (2011–2012) at the same South Korean university.

👨‍🏫 Professional Endeavors

Dr. Khan’s career reflects a steady rise in academia and pharmaceutical industries. His professional timeline includes pivotal roles such as Lecturer, Assistant Professor, and Associate Professor, culminating in his current designation as Professor at COMSATS University. His international experience as a Postdoctoral Researcher in South Korea sharpened his bioprocess engineering and fermentation technology skills. Earlier, he worked in quality control and assurance roles at various Pakistani pharmaceutical firms like Eli Lilly, Dr. Raza Pharma, and Frontier Dextrose Ltd., reflecting his solid industrial grounding.

🔬 Contributions and Research Focus

A prolific researcher, Dr. Khan’s primary interests span Phytomedicine, Microbial Polysaccharides, Bacterial Cellulose, Natural Products Chemistry, and Biomedical Applications. His dual expertise in natural and engineered sciences enables him to work at the interface of herbal pharmacology and bioengineering. He has led and co-led numerous nationally funded research projects focusing on cancer, cardiovascular diseases, and wound healing. His groundbreaking work on bacterial cellulose-based biomedical materials has received both local and global recognition.

🌍 Impact and Influence

Dr. Khan’s influence resonates through his extensive research supervision, including 18 PhD and over 50 MS theses. His students have explored innovative topics ranging from anticancer agents and biocomposites to cardioprotective natural compounds, contributing significantly to the Pakistani pharmaco-biotech landscape. He has contributed to policy development, drug standardization, and natural drug formulation, impacting both academia and industry.

📈 Academic Citations & Publications

He has authored numerous peer-reviewed articles, book chapters, and patents, including U.S. and Pakistani patents on wound healing formulations and drug delivery systems. His work appears in high-impact journals such as the Journal of Food and Drug Analysis, Plant Methods, and Nanocomposite Materials in Drug Delivery. His H-index and citation metrics underscore a well-cited academic presence, especially in areas of bioactivity-guided isolation and green composite formulations.

🧪 Research Skills

Dr. Khan exhibits mastery in a range of laboratory and analytical skills, including:

  • Fermentation Engineering

  • Biochemical Analysis

  • LC-MS/MS Profiling

  • Phytochemical Screening

  • Standardization of Herbal Drugs

  • Wound Healing Models in Animals

  • Molecular Docking and Simulation

His interdisciplinary expertise enables him to explore traditional knowledge systems with modern biochemical tools, making his research both innovative and impactful.

📘 Teaching Experience

A dedicated educator, Dr. Khan has over 20 years of teaching experience. He has taught both undergraduate and graduate courses in pharmacognosy, organic chemistry, microbiology, and biochemical engineering. His teaching philosophy blends research-led instruction with hands-on lab training, nurturing a generation of competent pharmacists and scientists.

🏆 Awards and Honors

Dr. Khan has received a plethora of prestigious awards, including:

  • 🏅 Best University Teacher Award (HEC, 2012–2013)

  • 🥇 Best Researcher Awards (2021, 2017)

  • 🧪 Innovation Award by SATHA (2015)

  • 🏆 Research Productivity Awards from PCST & COMSATS (2010–2017)

  • 🌍 Marquis Who’s Who in the World (2011)

  • 🎓 Korean KOSEF and KNU Fellowships for doctoral and postdoctoral studies

These accolades reflect his dedication to scientific excellence and national progress in pharmaceutical research.

🌟 Legacy and Future Contributions

As a visionary academician and researcher, Dr. Khan continues to inspire through mentorship, innovation, and community health initiatives. His ongoing projects on hypertension, cancer, and biomedical polymers point toward a sustainable and integrative approach to healthcare. With over three decades of multifaceted experience, he is poised to leave a lasting legacy in herbal drug development, biocomposite innovation, and pharmaceutical sciences education in Pakistan and beyond.

Top Publications 

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats

  • Authors: A.J. Shah, H.M. Qamar, U. Salma, Taous Khan
    Journal: Journal of Food and Drug Analysis
    Year: 2024

LC–ESI–MS/MS-based molecular networking, antioxidant, anti-glioma activity and molecular docking studies of Clematis graveolens

  • Authors: Z. Ahmed, M. Ikram, I. Khan, K. Bashir, A.J. Shah, Z. Hussain, Taous Khan
    Journal: Plant Methods
    Year: 2024

Identification of Cellulose Producing Bacterial Strains: An Eco-friendly and Cost-effective Approach

  • Authors: H. Muhammad, N.A. Alburae, M.A. Salam, M. Badshah, Taous Khan, S.E.M. Abo-Aba
    Journal: Journal of Pure and Applied Microbiology
    Year: 2024

 Extract of Chenopodium album lowers blood pressure in rats through endothelium-dependent and -independent vasorelaxation

  • Authors: A. Javed, S. Khan, U. Salma, T. Ahmad, Taous Khan, A.J. Shah
    Journal: Annales Pharmaceutiques Françaises
    Year: 2024

7-Hydroxy Frullanolide ameliorates isoproterenol-induced myocardial injury through modification of iNOS and Nrf2 genes

  • Authors: S. Ullah, T. Ahmad, M. Ikram, H.M. Rasheed, M.I. Khan, Taous Khan, T.G. Alsahli, S. Alzarea, M. Althobaiti, A.J. Shah
    Journal: Biomedicines
    Year: 2023

Feng Tian | Cancer Biophotonics Studies | Best Researcher Award

Prof. Dr. Feng Tian | Cancer Biophotonics Studies | Best Researcher Award

Prof. Dr. Feng Tian, Hebei University of Engineering, China 

Dr. Feng Tian, Ph.D., is a distinguished Professor of Bioinformatics and Medical Data Science at the School of Medicine, Hebei University of Engineering. With over two decades of academic and research excellence, Dr. Tian has established himself as a pioneer in integrating artificial intelligence, bioinformatics, and public health data science. His interdisciplinary expertise drives cutting-edge solutions across clinical diagnostics, multi-omics research, and emergency medical services.

Profile 

Scopus

🎓 Early Academic Pursuits

Dr. Tian earned both his Bachelor’s degree in Biology and his Ph.D. in Bioinformatics from the prestigious Tsinghua University in Beijing, one of China’s top academic institutions. During this period (2000–2009), he demonstrated exceptional promise in computational biology and systems genomics. His doctoral research laid the groundwork for his later contributions to regulatory network analysis and transcription factor dynamics.

👨‍🏫 Professional Endeavors

Dr. Tian has held the position of Professor at Hebei University of Engineering since 2021. His international outlook is marked by his tenure as a Visiting Scholar at the National Center for Data Mining, University of Illinois at Chicago (UIC), where he collaborated with globally recognized experts in biomedical informatics. He has also played a crucial role in establishing the Hebei Key Laboratory of Medical Data Science, fostering innovation at the intersection of AI and health sciences.

🔬 Contributions and Research Focus

Dr. Tian’s primary research interests include:

  • Artificial Intelligence in Health Big Data: Developing intelligent systems for disease prediction, emergency triage, and resource allocation.

  • Multi-Omics Data Integration: Focused on molecular subtyping and MRD detection in Acute Lymphoblastic Leukemia (ALL) using transcriptomic and epigenomic data.

  • Bioinformatics Platforms: Architecting data analysis systems such as miRAS and FlyNet, enabling high-throughput genomic data processing.

  • Public Health Policy Research: Evaluating healthcare accessibility and the impact of localized health interventions like the Handan “Health Cabins” model.

🌍 Impact and Influence

Dr. Tian has co-authored high-impact publications in Nature Communications, Haematologica, Advanced Science, and Bioinformatics, reflecting his global academic stature. His work has significantly advanced our understanding of ALL pathogenesis, and informed AI-based clinical workflows in China. As Principal Investigator on several multi-disciplinary projects, he has bridged the gap between academic research and real-world healthcare applications.

📊 Academic Citations

Dr. Tian’s publications have garnered substantial academic citations, particularly in areas involving gene regulatory networks, deep learning for medical text, and multi-omics disease characterization. His 2024 and 2025 papers on glucocorticoid response in leukemia and tumorigenic profiling of adrenal incidentalomas are already becoming cornerstone references in the field.

🧠 Research Skills

Dr. Tian is highly proficient in:

  • AI and Deep Learning for medical NLP and classification tasks.

  • Multi-omics Data Analysis, including single-cell transcriptomics and epigenetic landscape mapping.

  • Spatial Data Modeling for evaluating healthcare accessibility using probabilistic algorithms.

  • Cross-species genomic comparison and graph-based regulatory modeling.

These technical proficiencies underscore his rare ability to combine computational rigor with biomedical relevance.

🎓 Teaching Experience

Although his profile focuses largely on research, as a university professor, Dr. Tian contributes to the training of graduate students, supervising research projects, and likely guiding Ph.D. candidates in bioinformatics and medical data science. Expanding documentation of his mentorship impact would further highlight his academic leadership.

🏆 Awards and Honors

Dr. Tian has been the recipient of numerous national and provincial awards, including:

  • 🥇 First Prize, Hebei Provincial Science and Technology Progress Award (2024)

  • 🥈 Second Prize, Invention and Entrepreneurship Achievement Award, China Association of Inventions (2024)

  • 🥇 First Prize, Hebei Medical Science and Technology Award (2021)

  • 🥉 Third Prize, Outstanding Achievement Award in Social Sciences (2024)

These accolades validate the real-world impact and innovation of his work, both technically and socially.

🧾 Patents and Software Copyrights

Dr. Tian has secured 22 patents and software copyrights, including:

  • A patented Prehospital Emergency Information Processing Device (2021)

  • A method for AI-driven Emergency Text Classification using ChatGLM (2024)

  • A patented Site Selection Model for Emergency Medical Stations (2025)

These innovative tools have applications in emergency response, healthcare infrastructure planning, and medical informatics.

🌟 Legacy and Future Contributions

Dr. Tian is building a legacy of translational research and technological innovation. His future contributions are likely to further:

  • Shape AI-powered healthcare delivery models in China and abroad.

  • Deepen the understanding of cancer genomics through multi-omics research.

  • Influence healthcare policy through data-driven evaluations of public health programs.

As a leader in medical AI and public health informatics, he is poised to play a key role in addressing global healthcare challenges through data science and precision medicine.

Top Publications

miRAS: a data processing system for miRNA expression profiling study

  • Authors: Tian F, Zhang H, Zhang X, Song C, Xia Y, Wu Y, Liu X

  • Journal: BMC Bioinformatics

  • Year: 2007

  • Citation: BMC Bioinformatics. 2007 Aug 4;8(1):285.

A new single nucleotide polymorphism genotyping method based on gap ligase chain reaction and a microsphere detection assay

  • Authors: Tian F, Wu Y, Zhou Y, Liu X, Visvikis-Siest S, Xia Y

  • Journal: Clinical Chemistry and Laboratory Medicine (Clin Chem Lab Med)

  • Year: 2008

  • Citation: Clin Chem Lab Med. 2008;46(4):486-9.

A graph model based study on regulatory impacts of transcription factors of Drosophila melanogaster and comparison across species

  • Authors: Tian F, Chen J, Bao S, Shi L, Liu X, Grossman RL

  • Journal: Biochemical and Biophysical Research Communications (Biochem Biophys Res Commun)

  • Year: 2009

  • Citation: Biochem Biophys Res Commun. 2009 Sep 4;386(4):559-62.

Flynet: a genomic resource for Drosophila melanogaster transcriptional regulatory networks

  • Authors: Tian F*, Shah PK*, Liu X, Negre N, Chen J, Karpenko O, White KP, Grossman RL
    (*Shared first authorship indicated)

  • Journal: Bioinformatics

  • Year: 2009

  • Citation: Bioinformatics. 2009 Nov 15;25(22):3001-4.

DL-PER: Deep Learning Model for Chinese Prehospital Emergency Record Classification

  • Authors: Zhang X, Zhang H, Sheng L, Tian F*
    (*Tian F listed as senior/last author)

  • Journal: IEEE Access

  • Year: 2022

  • Citation: IEEE Access, vol. 10, pp. 64638-64649, 2022.

  • DOI: 10.1109/ACCESS.2022.3179685

Haitham Mahmoud | AI | Best Researcher Award

Dr. Haitham Mahmoud | AI | Best Researcher Award

Dr. Haitham Mahmoud , Birmingham City University , United Kingdom

🧑‍🎓 Short Bio & Early Academic Pursuits

Dr. Haitham Hassan Mohamed Mahmoud is a Research Fellow in Intelligent Networks at the Cyber-Physical System Research Group, Faculty of Computing, Engineering, and Built Environment, Birmingham City University, UK. His academic journey commenced with a Bachelor of Engineering (First Class Honours) in Electrical, Electronics, and Communications Engineering, through a dual-degree program between the British University in Egypt and Loughborough University, UK. Building on a solid foundation in communication systems and RF design, he pursued an MSc in Communication Engineering at AASTMT, Egypt, focusing on Cooperative Spectrum Sensing in Cognitive Radio Networks. He culminated his early academic phase with a PhD in Cyber-Physical Security for IoT-enabled water distribution systems, awarded by BCU as part of the prestigious Marie Curie ITN/Horizon2020 initiative.

Profile

Scopus

Orcid

Google Scholar

🧑‍🔬 Professional Endeavors & Career Path

Dr. Mahmoud’s professional career reflects consistent academic excellence and interdisciplinary collaboration. He has served as a Marie Curie ESR, Research Assistant, and Research Fellow, where he has been integral to projects funded by Horizon2020, EPSRC, British Council, and IUK. He currently leads multiple funded research initiatives while actively contributing to the UK’s telecoms innovation landscape, particularly through Open-RAN and 6G development.

🔍 Contributions & Research Focus

Dr. Mahmoud’s research bridges cybersecurity, AI, blockchain, IoT, and 5G/6G networks. He has developed self-supervised learning models for cyber-physical attack detection, contributed to blockchain-based privacy and reputation systems, and explored AI-enhanced Digital Twins for O-RAN. His projects span a wide spectrum—from smart water networks to quantum-secure communication and remote sensing for maritime search and rescue. His notable contributions include the WDSchain Toolbox, the OntoChain Project, and AI-based social care automation, underlining his cross-domain innovation in applying AI to real-world problems.

📈 Impact and Influence

With an H-index of 11 and over 470 citations, Dr. Mahmoud’s research has demonstrated significant influence. His high-impact publications in Q1 journals such as IEEE Internet of Things Magazine, IEEE Access, Sensors, and FGCS testify to his academic authority in IoT security, blockchain applications, and intelligent communication systems. His survey on 6G technologies is among the top cited and downloaded articles in the field, reflecting his thought leadership in next-gen networks.

📚 Academic Citations & Editorial Work

Dr. Mahmoud is not only a prolific researcher but also an active reviewer and editorial contributor. He has reviewed 300+ manuscripts for top-tier journals like IEEE Transactions, Scientific Reports, and MDPI. He is on the editorial board of Discover Networks (Springer) and leads several special issues on AI in 5G/6G, IoV, and blockchain technologies. His role as TPC member and session chair at major conferences (e.g., WCCI, ICACIN, WCNC) further underscores his scholarly engagement at the international level.

🛠️ Research Skills & Capabilities

Dr. Mahmoud exhibits technical versatility with expertise in MATLAB, Python, C++, and blockchain frameworks like Ethereum. He is proficient in data intelligence, machine learning, DL/RL algorithms, network simulation, and sensor integration. His ability to lead multidisciplinary research teams, manage cross-national projects, and mentor young researchers highlights his project management and leadership acumen.

👨‍🏫 Teaching Experience

Dr. Mahmoud has demonstrated excellent teaching skills across multiple academic levels. At BCU, he led postgraduate modules such as Applied Machine Learning (Level 7) and Mathematics for Computing (Level 4) with impressive MMR scores (4.4 and 4.3). Previously, at British University in Egypt, he taught a wide array of modules including Programming in Java, Signals & Systems, and Wireless Communications, while supervising numerous MSc and BSc theses.

🏆 Awards and Honors

Dr. Mahmoud’s dedication has been recognized through multiple prestigious accolades:

  • 🥇 Best Researcher Award (2024) – Birmingham City University

  • 🏆 Best Paper Awards at ICACIN 2024 and IEEE Comnetsat 2017

  • 🌟 Top Cited & Downloaded Articles in Transactions on Emerging Telecommunications Technologies (Wiley)
    These awards affirm his excellence in research innovation, impact, and outreach.

🌍 Legacy and Future Contributions

Dr. Mahmoud is carving a path toward becoming a global leader in smart communication systems and AI-driven cyber-physical security. With ongoing supervision of 2 PhD, 2 MSc, and 4 BSc students, he is actively shaping the next generation of engineers and researchers. His visionary work on sustainable AI, resilient infrastructures, and inclusive digital engineering promises long-lasting contributions to academia, industry, and policy-making.

Top Publications

Enhancing Resilience in IoT Water Systems Using Data-Intelligence and Decentralization


  • Authors: Haitham H. Mahmoud, Wenyan Wu, Mohamed Gaber, Yonghao Wang
    Journal: IEEE IoT Magazine
    Year: 2025

Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter


  • Authors: Nancy Alsaer, Reham Abdelfatah, Tawfik Ismail, Haitham H. Mahmoud
    Journal: Computational Intelligence
    Year: 2025

Enhancing Security Awareness Through Gamified Approaches


  • Authors: Yussuf Ahmed, Muhammad Ajmal Azad, Mohamed Ben Farah, Mehdi Yousefi, Haitham H. Mahmoud, Michael Ezealor
    Journal: arXiv preprint (arXiv:2404.09052)
    Year: 2024

 A Systematic Review of Blockchain-Based Privacy-Preserving Reputation Systems for IoT Applications


  • Authors: Haitham H. Mahmoud, Junaid Arshad, Adel Aneiba
    Journal: Distributed Ledger Technologies
    Year: 2024

 

 

 

Tikaram Neupane | Light-Matter Interactions | Best Researcher Award

Assist. Prof. Dr. Tikaram Neupane | Light-Matter Interactions | Best Researcher Award

Assist. Prof. Dr. Tikaram Neupane , University of North Carolina at Pembroke, United States 

Dr. Tikaram Neupane is an accomplished Assistant Professor of Physics at the University of North Carolina at Pembroke, where he merges a passion for cutting-edge research in condensed matter and optical physics with deep commitment to undergraduate education and scientific outreach. His career reflects an inspiring journey from Nepal to international academic platforms, including prestigious institutions in Italy, Wyoming, Virginia, and North Carolina, underpinned by fellowships, research assistantships, and national awards.

Profile

Orcid

Scopus

Google Scholar

📚 Early Academic Pursuits

Dr. Neupane’s scientific foundation was laid through a Postgraduate Diploma in Earth System Physics from the International Center for Theoretical Physics (ICTP), Trieste, Italy, supported by a UNESCO Fellowship (2010–2011). He furthered his education with an M.S. in Condensed Matter Physics from the University of Wyoming (2014–2015), where he worked on solar cell characterization and perovskite simulation. His academic journey culminated in a Ph.D. in Condensed Matter and Optical Physics from Hampton University (2016–2020), where he explored nonlinear optical phenomena in 2D materials like Tungsten and Molybdenum Disulfides.

🧪 Professional Endeavors

Currently serving as an Assistant Professor at UNCP (since 2021), Dr. Neupane balances his teaching responsibilities with active roles in program coordination, student mentorship, and undergraduate research leadership. His prior postdoctoral work (2020–2021) at the University of Southern Mississippi and NASA’s Stennis Space Center reflects his interdisciplinary scope, focusing on Ocean Optics and Remote Sensing.

🔬 Contributions and Research Focus

Dr. Neupane’s research spans nonlinear optics, nanophotonics, and quantum materials, with particular emphasis on:

  • Third-order optical nonlinearity in 2D materials

  • Quantum dots and photoluminescence

  • Spatial self-phase modulation and all-optical switching

  • First-principle simulations using DFT (Density Functional Theory)

He has authored over 12 peer-reviewed journal articles, contributed to a book chapter on graphene, and presented at 65+ scientific conferences—a testament to his consistent scholarly productivity.

🌍 Impact and Influence

As the Director of the North Carolina Region 4 Science and Engineering Fair and a board member of the statewide fair, Dr. Neupane plays a critical role in STEM outreach and student recruitment, especially within minority-serving institutions. He is also an organizer, judge, and evaluator in diverse scientific arenas, from the DoD SMART scholarship program to robotics competitions and ANPA conferences.

📈 Academic Citations & Recognition

Dr. Neupane’s works are cited in materials science, optics, and nanotechnology research communities, particularly his studies on graphene oxide, transition metal dichalcogenides (TMDCs), and perovskite QDs. His recent publications in Optics and Laser Technology, Materials, and Crystals have attracted significant academic interest.

🧠 Research Skills

Dr. Neupane is proficient in both experimental and computational techniques, including:

  • Laser systems (picosecond, nanosecond, and CW lasers)

  • Spectroscopic techniques (UV-Vis, Raman, low-T PL)

  • Microscopy (AFM, TEM, XRD)

  • Nonlinear characterization (Z-scan, I-scan, self-phase modulation)

  • Software and Simulation tools like VASP, Quantum Espresso, MATLAB, and Origin

👨‍🏫 Teaching Experience

At UNCP, Dr. Neupane leads undergraduate courses in physics, coordinates the Applied Physics Program, and supervises student-led research through the Pembroke Undergraduate Research and Creativity (PURC) Center. His ability to simplify complex concepts and his commitment to student development are consistently praised.

🏅 Awards and Honors

Dr. Neupane’s excellence is recognized through numerous accolades:

  • 🥇 Best Presentation Award, ICNST International Conference (2019)

  • 🚀 NASA & DoD Research Assistantship, Hampton University

  • 🌍 UNESCO Fellowship, ICTP

  • 🎓 Dean’s Research and Scholarship Fund (2021), NC Collaboratory for HMSIs (2022), PURC Research Funds (2023–2025)

🔮 Legacy and Future Contributions

Dr. Neupane is set to chair the 8th ANPA International Conference in 2025 and will continue to lead national efforts in optical research, student development, and scientific inclusivity. His trajectory promises continued innovation in photonics and nanomaterials, while fostering the next generation of physicists through education, mentorship, and global scientific collaboration.

Top Publications

“Size-dependent fluorescence properties of CdSe quantum dots”

  • Authors: U. Poudyal, C. M. Adhikari, N. H. Makani, B. R. Gautam, and T. Neupane
    Journal: Solid State Communications
    Year: 2025 (Accepted)

“Cubic Nonlinearity of Graphene-oxide Monolayer”

  • Authors: T. Neupane, U. Poudyal, B. Tabibi, W-J Kim, F. J. Seo
    Journal: Materials, Volume 16, Article 6664
    Year: 2023

“Dispersion in Single-Wall Carbon Nanotube Film: An Application of Bogoliubov–Valatin Transformation for Hamiltonian Diagonalization”

  • Authors: C. M. Adhikari, D. M. Morris, T. W. Noonan, T. Neupane, B. R. Lamichhane, B. R. Gautam
    Journal: Condens. Matter, Volume 8, Article 53
    Year: 2023

“Spatial self-phase Modulation in Graphene-oxide Monolayer”

  • Authors: T. Neupane, B. Tabibi, W-J Kim, F. J. Seo
    Journal: Crystal, Volume 813, Article 271
    Year: 2023

“Crossover from reverse Saturable to Saturable Absorption in Two-Dimensional Tungsten Disulfide”

  • Authors: T. Neupane, C. M. Adhikarihird-order optical nonlinearity in 2D materials
    Journal: Journal of Nepal Physical Society, Volume 8, Pages 31–36
    Year: 2022

Dongdong Liu | Fabrication and application of CVD diamond coatings | Best Researcher Award

Dr. Dongdong Liu | Fabrication and application of CVD diamond coatings | Best Researcher Award

Dr. Dongdong Liu ,Shanghai Jiao Tong University, China

Dongdong Liu, is a Ph.D. candidate in the School of Mechanical Engineering at Shanghai Jiao Tong University (SJTU), one of China’s most prestigious research institutions. A direct-entry Ph.D. student, Dongdong is quickly emerging as a rising star in the field of advanced materials engineering, particularly in CVD (chemical vapor deposition) coatings and diamond tool technologies. He is mentored by Professor Fanghong Sun, a well-known expert in manufacturing and materials science.

Profile

Scopus

📘 Early Academic Pursuits

Dongdong began his academic journey with a B.Eng. in Mechanical and Electrical Engineering from the Nanjing University of Aeronautics and Astronautics (2017–2021), where he was recognized with the National Encouragement Scholarship (twice) and named both a University Outstanding Student and an Outstanding Graduate. His early achievements, including a second prize in a provincial mechanics competition, laid the foundation for his excellence in engineering and innovation.

🧑‍🔬 Professional Endeavors

Currently pursuing his Ph.D. since September 2021 at SJTU, Dongdong has led and co-led multiple major research projects. These include grants from the National Natural Science Foundation of China, international cooperative research, and industry-university collaboration projects. Notably, he has contributed to the design and industrial implementation of automated doping equipment for diamond coatings in cooperation with Mitsubishi (Japan)—a remarkable feat for a Ph.D. student.

🔬 Contributions and Research Focus

Dongdong’s research is centered on the fabrication and application of CVD coatings, especially diamond abrasive grains, doped/undoped single crystal diamond (SCD), and cutting and grinding tool technologies. His expertise includes simulation and experimental investigation of micro-edge diamond abrasive grains, the development of novel CVD-based grinding tools, and the design of high-performance doped diamond films. His innovations have applications in precision grinding of hard-brittle materials like SiC ceramics, quartz glass, and silicon wafers.

🌍 Impact and Influence

Despite still being a student, Dongdong’s research has already crossed academic and industrial boundaries. He has facilitated the industrialization of diamond coating technologies, a rare achievement at the doctoral level. His work bridges the gap between fundamental materials science and real-world engineering applications, contributing to sectors such as semiconductor manufacturing, automotive, and aerospace materials processing.

📚 Academic Cites

Dongdong has authored multiple first-author articles in high-impact journals, including:

  • Journal of Materials Research and Technology (IF: 6.2)

  • Journal of Manufacturing Processes (IF: 6.1)

  • Applied Surface Science (IF: 6.3)

  • Diamond and Related Materials (IF: 4.3)

  • Ceramics International (IF: 5.1)

These publications, combined with his participation in international symposia like ISAAT 2023 and 2024, have made his work visible to a global research community.

🧪 Research Skills

Dongdong brings a rare combination of theoretical depth and experimental mastery. His skills span:

  • CVD process simulation and optimization

  • Diamond doping technologies (B, N, Si, and multi-doping)

  • Advanced tool design and fabrication

  • Materials characterization

  • Finite element simulations of grinding mechanisms

His ability to translate complex scientific theories into functional industrial applications underscores his exceptional research acumen.

🎓 Teaching Experience

While not explicitly mentioned, his extensive project leadership, publication record, and conference presentations strongly imply mentorship and knowledge transfer skills, crucial for teaching and academic development roles in the future.

🏅 Awards and Honors

Dongdong has accumulated numerous accolades that reflect his academic excellence and innovation:

  • 🥈 2024 Silver Award (Team Leader), CICSIC Industry Track, Shanghai Division

  • 🎓 BYD Scholarship, 2024 (Industry-recognized)

  • 🏆 National Encouragement Scholarship, twice

  • 🥈 Second Prize, Provincial Mechanics Competition

  • 🌟 Outstanding Student & Graduate, Nanjing University of Aeronautics and Astronautics

These honors are a testament to his leadership, creativity, and technical excellence.

🚀 Legacy and Future Contributions

Dongdong Liu is poised to become a leading researcher and innovator in materials engineering and tool technology. His contributions to CVD-based diamond tool development, particularly in precision grinding and semiconductor processing, have already demonstrated industrial scalability and societal relevance. With his momentum, he is expected to contribute to next-generation manufacturing technologies, mentor future engineers, and bridge academic research with industrial implementation.

Top Publications

Simulation and experimental investigation of single CVD micro-edge diamond abrasive grain grinding

  • Authors: Liu D, Zhu H, Shen R, et al.
    Journal: Journal of Materials Research and Technology
    Year: 2025 (Accepted)

 Numerical simulation and experimental researches on different abrasive grain arrangements of monolayer   diamond grinding tools fabricated by HFCVD method

  • Authors: Liu D, Zhu H, Lu M, et al.
    Journal: Journal of Manufacturing Processes
    Year: 2024

 Fabrication and grinding performance of CVD diamond coated Ni-based brazed diamond grinding tools

  • Authors: Liu D, Zhu H, Shen R, et al.
    Journal: Journal of Manufacturing Processes
    Year: 2025 (Accepted)

 Optimization of deposition parameters for the growth of micro-edge diamond abrasive grains using HFCVD method

  • Authors: Liu D, Lu M, Zhang C, et al.
    Journal: Diamond and Related Materials
    Year: 2023

DFT calculations and experiments of oxidation resistance research on B, N, and Si multi-doped diamond films

  • Authors: Lu M, Liu D, Zhang C, et al.
    Journal: Applied Surface Science
    Year: 2023

Ruitao Chai | Novel Fluorescent Technologies | Top Researcher Award

Dr. Ruitao Chai | Novel Fluorescent Technologies | Top Researcher Award

Dr. Ruitao Chai  , Xi’an University of Architecture and Technology ,  China

Dr. Ruitao Chai is a dedicated Chinese materials scientist whose academic journey and research have significantly contributed to the development of luminescent nanocomposites. She obtained her Ph.D. in 2010 from the State Key Laboratory of Rare Earth Resource Utilization at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS)—a prestigious institution known for pioneering work in materials chemistry. Currently, she serves as a lecturer at Xi’an University of Architecture and Technology, where she continues to advance her work in display and lighting technologies.

Profile 

Scopus

📚 Early Academic Pursuits

Dr. Chai’s early academic path was deeply rooted in rare earth chemistry and applied materials science. During her doctoral studies at CAS, she focused on the synthesis, characterization, and photophysical behavior of rare earth-doped nanomaterials, laying a strong foundation in luminescence mechanisms, nanostructure engineering, and energy transfer dynamics—skills critical to modern optoelectronic applications.

🧪 Professional Endeavors

After completing her Ph.D., Dr. Chai joined Xi’an University of Architecture and Technology as a faculty member. In her role as a lecturer, she has balanced teaching, mentoring, and high-impact research, while actively participating in collaborative projects aimed at improving solid-state lighting and flexible display materials.

🔬 Contributions and Research Focus

Dr. Chai’s research primarily focuses on luminescent nanocomposites designed for display and lighting applications. Her work explores the integration of rare earth elements, quantum dots, and polymer matrices to achieve efficient photoluminescence, color tuning, and thermal stability. Her studies contribute to the next generation of energy-saving and high-performance lighting technologies.

🌟 Impact and Influence

While still in the early to mid-stages of her career, Dr. Chai has influenced the field of functional materials for optoelectronics, particularly in China’s emerging photonics industry. Her contributions support broader sustainability goals, promoting the development of eco-friendly lighting systems.

📖 Academic Citations

Although her citation metrics are currently modest compared to long-standing researchers, Dr. Chai’s work has been referenced in journals focused on luminescent materials, rare earth chemistry, and nanocomposites. Her citations reflect a growing acknowledgment of her niche expertise in applied photoluminescence.

🛠️ Research Skills

Dr. Chai demonstrates proficiency in a wide range of research techniques, including:

  • Sol–gel and hydrothermal synthesis

  • Spectroscopic analysis (PL, UV-Vis, FTIR)

  • X-ray diffraction and electron microscopy

  • Surface modification of nanomaterials

  • Thermal and optical property analysis

Her methodological skills allow her to design nanocomposites with controlled luminescent properties and stability, essential for real-world deployment.

👩‍🏫 Teaching Experience

At Xi’an University of Architecture and Technology, Dr. Chai teaches undergraduate and graduate courses in materials chemistry, nanoscience, and optical materials. She is known for blending fundamental theory with hands-on experimental training, preparing students for both academia and industry.

🏆 Awards and Honors

While specific awards are not listed, her appointment as a lecturer at a major Chinese university and her doctoral completion from CAS indicate high recognition of her academic capability. It is likely that she has received institutional or provincial research funding to support her work.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Ruitao Chai is poised to further strengthen her contributions to sustainable photonic materials. Her future work is expected to focus on environmentally benign synthesis methods, multi-functional nanocomposites, and smart lighting systems for energy-efficient architecture. She is also likely to mentor the next generation of scientists in luminescence and nanomaterials research.

Top Publications

Synthesis and characterization of NaYF₄: Yb³⁺, Tm³⁺/CsPbBr₃ composites with wide absorption spectra for potential application in solar cells

  • Authors: Ruitao Chai, Guo Zhang

  • Journal: Optical Materials

  • Year: 2025

  • Citations: 0 (as of now)

Preparation and Characterization of Red, Green, Blue (RGB) and White Luminescent Inorganic/Organic Polymers Through In Situ Polymerization

  • Authors: Ruitao Chai, Guo Zhang

  • Journal: Journal of Fluorescence

  • Year: 2024

  • Citations: 0 (as of now)

Madhu Biyani | Electrochemical Biosensors | Best Researcher Award

Assist Prof. Dr. Madhu Biyani | Electrochemical Biosensors | Best Researcher Award

Assist Prof. Dr. Madhu Biyani, Kanazawa University, Japan

Dr. Madhu Biyani is a physician and bioengineer from India, currently serving as Assistant Professor at NanoLSI, Kanazawa University, Japan. With a doctorate in bioengineering from Saitama University, her expertise lies in drug metabolism and electrochemical biosensors. She bridges clinical insight with molecular biology, contributing to research on peptide aptamers for targeted diagnostics. Her interdisciplinary work enriches biomedical innovation, especially in precision medicine. Fluent in Japanese and English, Dr. Biyani’s global academic and research journey exemplifies scientific excellence and cross-cultural collaboration. 🌏

👩‍⚕️ Profile

Scopus

🎓 Education

Dr. Biyani completed her Bachelor of Homoeopathic Medicine and Surgery (B.H.M.S.) from the University of Rajasthan in 2000. She then pursued her Ph.D. in Bioengineering at Saitama University, Japan, in 2011. Her doctoral thesis focused on enhancing protease activity using peptide aptamers for drug discovery applications. She also holds JLPT Level N3 certification, demonstrating proficiency in Japanese. Her educational path reflects a strong integration of clinical medicine and molecular engineering—forming the basis of her impactful biosensor and drug metabolism research. 🎓

💼 Experience

Dr. Biyani has over 15 years of experience in biomedical research across academia and industry. She has worked in premier Japanese projects such as REDS (JST), City Area, and Sentan, focusing on biomolecule design and diagnostics. Her tenure includes research roles in Saitama University, JAIST, and Toyama Prefectural University. She also contributed to a private biotech firm, BioDevice Technology Ltd. Since 2020, she’s held a faculty position at NanoLSI, where she leads drug metabolism and toxicology studies. Her career reflects a diverse, well-rounded scientific journey from bench to bedside. 🔬

🔬 Research Interest

Dr. Biyani’s research focuses on drug metabolism, toxicology, peptide aptamer development, and electrochemical biosensors. She is passionate about translating molecular tools into clinically actionable platforms, enabling real-time monitoring of enzymatic activity and drug responses. Her work integrates nanotechnology, molecular biology, and analytical chemistry—providing precision tools for early disease detection and safer drug therapies. She is particularly interested in using biosensors for evaluating liver enzyme functions and metabolic pathways, which can revolutionize personalized medicine. ⚗️

🏅 Awards

While Dr. Biyani has not yet received high-profile awards, she is an emerging talent with significant contributions to Japanese and international biomedical research. Her involvement in multiple Japanese Science and Technology Agency (JST) projects and her role in developing clinical biosensing platforms position her as a strong contender for research recognition. Her cross-disciplinary and multicultural profile makes her an ideal candidate for young researcher, women in science, and bioengineering innovation awards. 🌟

📚 Publication Top Notes

“Protease Activity-Enhancing Peptide Aptamer Development”

“Application of Electrochemical Biosensors in Drug Toxicity Screening”

“Design of Aptamer-Based Platforms for Drug Metabolism Analysis”

khaterehsarmast | Soil contamination | Best Research Article Award

Mrs. khaterehsarmast | Soil contamination | Best Research Article Award

Mrs hatereh sarmasti, University of Zanjan, Iran

Dr. Chong Shan is currently serving as an Assistant Researcher at the Shanghai Institute of Ceramics, Chinese Academy of Sciences. With a strong foundation in materials science and optics, his work explores the frontiers of laser-matter interaction and ultrafast optics. Passionate about advancing photonics and energy-related materials, Dr. Shan has significantly contributed to the understanding of optical damage and coherent light phenomena in dielectric materials. 🌌

Profile

scopus

🎓 Education

Dr. Shan obtained his Ph.D. in Physics from Fudan University, one of China’s premier institutions, where he specialized in laser-material interaction and ultrafast phenomena. His academic journey is rooted in a strong theoretical and experimental background that fuels his current scientific inquiries. 🧑‍🎓

💼 Experience

Following his doctoral studies, Dr. Shan joined the Shanghai Institute of Ceramics, CAS, as an Assistant Researcher. In this role, he has led several national and institutional research initiatives focusing on laser-induced damage, low-coherence light sources, and photonic applications in advanced ceramics. He actively collaborates with leading experts in nonlinear optics and laser physics. 🔬

🔍 Research Interests

Dr. Shan’s primary research interests include laser-matter interaction, optical damage in fused silica, low-temporal coherence light, and nonlinear optical effects in dielectric materials. His work bridges the gap between fundamental light-matter studies and practical applications in high-power laser systems and photonic devices. 💡

🏆 Awards

Dr. Chong Shan has been recognized for his research excellence with several academic accolades, including merit-based research funding and institutional honors. He is a strong contender for categories such as Best Researcher Award, Excellence in Innovation, and Young Scientist Award due to his pioneering contributions to photonics and laser-material interaction. 🏅

📚 Publications

“Spatially resolved time-gated imaging of surface laser damage in fused silica”

“Temporal coherence induced modulation of laser damage morphology in fused silica”

“Low-coherence light induced non-Gaussian energy deposition and damage morphology in dielectric materials”

Chong Shan | Laser Interaction Studies | Best Researcher Award

Dr. Chong Shan | Laser Interaction Studies | Best Researcher Award

Dr. Chong Shan, Shanghai Institute of Ceramics, China

Dr. Chong Shan is a pioneering researcher in the field of laser optics, currently serving as an Assistant Researcher at the Shanghai Institute of Ceramics. With a keen interest in laser-induced damage mechanisms, his contributions to understanding light-matter interactions under low-temporal coherence conditions are regarded as innovative and foundational in optical science. His work emphasizes advanced diagnostic techniques and damage growth modeling—contributing significantly to both theoretical advancements and practical applications in high-power laser systems.

🧑‍💼 Profile

Scopus

🎓 Education

Dr. Shan earned his doctorate from the prestigious Fudan University, where he developed a solid foundation in applied physics, photonics, and material science. During his academic journey, he specialized in optics and laser-material interactions, excelling in both coursework and laboratory research. His doctoral work laid the groundwork for his current expertise in optical coatings and fused silica behavior under high-energy conditions. His academic rigor and discipline were consistently evident through award-winning theses and collaborative publications with leading research groups.

🧪 Experience

As an Assistant Researcher at the Shanghai Institute of Ceramics, Dr. Shan has led and collaborated on various national-level research projects. His experience spans experimental physics, optical system design, and advanced spectroscopy. He plays a key role in mentoring junior researchers, coordinating multi-institutional collaborations, and delivering talks at domestic and international conferences. His hands-on expertise in spatial and temporal light diagnostics adds valuable depth to the scientific community’s understanding of laser damage mechanisms in dielectric materials.

🔍 Research Interest

Dr. Shan’s primary research interest lies in the intricate domain of laser-induced damage in optical materials—especially fused silica—under low-temporal coherence light. His investigations cover topics like self-focusing, stimulated Brillouin scattering, and spatially resolved diagnostics of multilayer coatings. He aims to enhance the damage thresholds of optical elements, directly impacting the performance and longevity of high-energy laser systems. His interdisciplinary approach connects materials science, optics, and applied physics, opening new frontiers in laser safety and energy propagation modeling.

🏅 Awards

Although early in his career, Dr. Shan has already received recognition for excellence in research through internal awards from Fudan University and accolades from the Shanghai Institute of Ceramics. His work has been nominated for national innovation grants and has been spotlighted at high-level scientific symposiums. He is considered a promising figure in China’s laser optics community, and his contributions are being increasingly cited by peers, reflecting both scholarly respect and practical relevance.

📚 Publication Top Notes

“Damage growth characteristics on the exit surface of fused silica by the low-temporal coherence light irradiation”

“Damage characteristics of fused silica under low-temporal coherence light”, High Power Laser Science and Engineering,

“Self-focusing and stimulated Brillouin scattering effect of low-temporal coherence light and corresponding damage characteristics in fused silica”

“Multi-wavelength coupling effect of laser-induced defect damage in beam splitter films”, Optics and Laser Technology,

“Laser-induced defects in optical multilayer coatings by the spatial resolved method”, Chinese Optics Letters.

Ayoub H. Jaafar | Integrated memory arrays | Best Researcher Award

Dr. Ayoub H. Jaafar | Integrated memory arrays | Best Researcher Award

Dr. Ayoub H. Jaafar, University of Nottingham, United Kingdom

Dr. Ayoub H. Jaafar is an accomplished physicist and Research Fellow at the School of Physics and Astronomy, University of Nottingham, UK. 🌍 He holds a PhD in Physics from the University of Hull and is renowned for his pioneering work on optically tunable memristors and nanocomposite devices for neuromorphic and photonic computing. Over the years, he has held prestigious research roles across leading UK institutions and contributed extensively to state-of-the-art advances in memory technologies. With a strong portfolio of publications and active participation in peer-review and scientific mentoring, Dr. Jaafar exemplifies academic excellence and leadership in applied physics. 🧪✨

🧑‍💼 Profile

Orcid

Googlescholar

🎓 Education

Dr. Jaafar earned his PhD in Physics (2014–2018) from the University of Hull, UK, with a thesis focused on organic-inorganic composite materials for memristors. His MSc in Applied Physics (2010–2012) and BSc in Applied Physics (2004–2009) were both obtained from the University of Technology, Baghdad, where he graduated top of his class during his MSc and ranked fifth during his undergraduate studies. His education was supported by a fully funded scholarship from the Iraqi Ministry of Higher Education, covering tuition, living expenses, and English language training in the UK. 🎓📘

🧪 Experience

Dr. Jaafar’s career spans key academic and industrial research appointments. He currently serves as a Research Fellow at the University of Nottingham (2022–present), where he is developing optically tunable memristors for AI-driven photonic systems. Previously, he was a Research Fellow at the University of Southampton (2020–2022), focusing on phase-change memories and chalcogenide materials as part of the EPSRC-funded ADEPT project. At the University of Hull (2018–2019), he worked on graphene oxide-based optical memory devices. His broad technical skills include device fabrication, thin-film deposition, and advanced material characterization. 🧑‍🏫🔬

🔬 Research Interests

Dr. Jaafar’s research centers on next-generation memory systems, with a strong emphasis on resistive switching devices, optoelectronics, and neuromorphic computing. His focus areas include hybrid nanostructures, memristive behavior under optical control, and energy-efficient hardware for AI. His innovative work explores how memristors can mimic synaptic behaviors for brain-inspired computing. He also delves into reservoir computing, phase-change materials, and electrodeposited thin films. 🌐⚡

🏅 Awards

Dr. Jaafar was honored with the 2022/2023 Dean’s Award from the Faculty of Engineering and Physical Sciences at the University of Southampton for his exceptional contribution to research. He also received a fully funded PhD scholarship from the Iraqi Ministry of Higher Education. These accolades underscore his scientific excellence, leadership, and impactful research in emerging memory technologies. 🏆📈

📚 Publications

“Integrated Ovonic Threshold Switching Selector and Resistive Switching Memory 1S1R in Electrodeposited ZnTe Thin Films”, Advanced Materials Technologies, 2025 – cited by 2 articles.

“Light-Mediated Multi-Level Neuromorphic Switching in a Hybrid Organic-Inorganic Memristor”, ACS Omega, 2024 – cited by 5 articles.

“Unique Co-existence of Two Resistive Switching Modes in a Memristor Device Enables Multifunctional Neuromorphic Computing Properties”, ACS Applied Materials & Interfaces, 2024 – cited by 3 articles.

“Tunable Neuromorphic Switching Dynamics via Porosity Control in Mesoporous Silica Diffusive Memristors”, ACS Applied Materials & Interfaces, 2024 – cited by 4 articles.

“Optically Controlled Memristor Using Hybrid ZnO Nanorod/Polymer Material”, NANOARCH 2023 Proceedings, 2023 – cited by 2 articles.

“Printed and Flexible Organic and Inorganic Memristor Devices”, Journal of Physics D, 2023 – cited by 6 articles.

“Optoelectronic Switching Memory Based on ZnO Nanoparticle/Polymer Nanocomposite”, ACS Applied Polymer Materials, 2023 – cited by 3 articles.

“Flexible Memristor Devices Using Hybrid Polymer/Electrodeposited GeSbTe”, ACS Applied Nano Materials, 2022 – cited by 7 articles.

“3D-Structured Mesoporous Silica Memristor for Neuromorphic Switching and Reservoir Computing”, Nanoscale, 2022 – cited by 8 articles.

“Anodic Sb₂S₃ Electrodeposition for RRAM Devices”, Electrochimica Acta, 2022 – cited by 4 articles.